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What are "high-level reasoning tasks"? V1

Low-level
� part-of-speech tagging
� syntactic parsing
� named
entity recognition

� ...

High-level
� question answering
� natural language inference
� commonsense reasoning
� ...
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What are "high-level reasoning tasks"? V2

Low-level
� part-of-
speech
tagging

� syntactic
parsing

� named
entity
recognition

� ...

Mid-level
� sentiment
analysis

� coreference
resolution

� discourse
relation
extraction

� ...

High-level
� question
answering

� natural
language
inference

�

commonsense
reasoning

� ...
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High-level NLP tasks are gaining popularity!
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NLP publications: POS-tagging

Mohammad (2020)
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NLP publications: syntactic parsing

Mohammad (2020)
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NLP publications: semantic parsing

Mohammad (2020)
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NLP publications: question answering

Mohammad (2020)
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NLP publications: natural language inference

Mohammad (2020)
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NLP publications: commonsense reasoning

Mohammad (2020)
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Why are these tasks so popular? A1: end-to-end systems!

(Schouten et al., 2017)

or
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Why are these tasks so popular? A2: leaderboards!

Wang et al. (2018)
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Why are these tasks so popular? A3: conversational agents!
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Why are these tasks so popular? A4: they look cool!
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Tasks vs formats
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Everything is question answering!

(McCann et al., 2018)
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Everything is question answering!

(McCann et al., 2018)
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Everything is NLI!

(Vashishtha et al., 2020)
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Let's rephrase?
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Question Answering is (also) a format

QA (format)

QA (task)

this tutorial

Annotation
Framework

see FitzGerald et al. (2018),He et al. (2015),
Michael et al. (2018),Pyatkin et al. (2020)

Model / Architecture
Transfer & Sharing

see Levy et al. (2017),Das et al. (2018),
Li et al. (2019),Li et al. (2020),Du and Cardie (2020),

Kumar et al. (2016),McCann et al. (2018)

inspired by: (Gardner et al., 2019)
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When is QA a format?

how easily can the questions be replaced with ids?

Classification
What is the
sentiment?

Template-filling
When was
<PERSON> born?

Open-ended
(too many
templates and/or
variables)

(Gardner et al., 2019)
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QA: sources of information
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Question answering sub�elds

Question answering

Reading
comprehension

Open-domain
QA

Multi-modal
QA

Information retrieval
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Area: Open-domain question answering

Open-domain QA: sources of information

Collections
of documents

Single document Structured knowledge

Not provided

Reading comprehension
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QA on collections of documents: datasets

� TriviaQA (Joshi et al., 2017);
� SearchQA (Dunn et al.,
2017);

� MS MARCO (Bajaj et al.,
2016);

� AmazonQA (Gupta et al.,
2019);

� TrecQA-based data by Tsai
et al. (2015);

� Chinese: WebQA; (Li et al.,
2016);

� ...

Open-domain QA: sources of information

Collections
of documents

Single document Structured knowledge

Not provided

Reading comprehension
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TriviaQA: example

Q: Who was the man behind The Chipmunks?

A: David Seville

Context 1: ”Alvin and the Chipmunks (2007) - IMDb IMDb 17 January 2017 4:34 PM, UTC NEWS There was an
error trying to load your rating for this title. Some parts of this page won’t work property. Please reload or
try later. X Beta I’m Watching This! Keep track of everything you watch; tell your friends. Error Alvin and the
Chipmunks ( 2007 ) PG | A struggling songwriter named Dave Seville finds success when he comes across a
trio of singing chipmunks ...”

Context 2: ”The Chipmunks - Biography | Billboard The Chipmunks Alvin Simon Theodore Ross Bagdasarian
David Seville Possibly the most popular TV and musical cartoon of all time, the Chipmunks enjoyed several
periods of prosperity – beginning with the ’60s era of adolescent Baby Boomers, cresting in the ’80s, when
the Boomers’ children were growing up, and riding the wave clear into the new millennium. The man who
brought the Chipmunks to life, Ross Bagdasarian, was born on January 27, 1919, in Fresno, California....”

...

Context 10: ”Alvin and the Chipmunks: The Squeakquel | Channel Awesome | Fandom powered by Wikia Alvin
and the Chipmunks: The Squeakquel 2,694pages on Alvin and the Chipmunks: The Squeakquel Released (For
the Nostalgia Critic’s review of the movie, go here ) ....”
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Trivia QA: data

� Collection methodology: Questions authored by trivia
enthusiasts are automatically paired with Wikipedia
passages and web snippets, assuming that the presence of
the answer string in the text indicates the presence of the
answer. This holds about 75% of the time. A small subset
of texts is manually validated to contain the answer.

� Challenges: lexical variation (synonims), lexical variation
+world knowledge, syntactic variation, multi-hop
reasoning, processing lists and tables

� Dataset size: 95K Q+A, 650K Q+A+evidence triplets, 1975
verified triplets
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TriviaQA: status

Human performance: 79.7% on the Wikipedia domain, and
75.4% on the web domain
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Special case: multi-hop QA

� HotPotQA (Yang et al.,
2018a);

� QAngaroo (Welbl et al.,
2018);

� ComplexWebQuestions
(Talmor and Berant, 2018);

� HybridQA (Chen et al.,
2020b);

� ...

Open-domain QA: sources of information

Collections
of documents

Single document Structured knowledge

Not provided

Reading comprehension
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HotPotQA: example (Yang et al., 2018a)
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HotPotQA: data (Yang et al., 2018a)

� Collection methodology: questions are written by crowdworkers based on
several wikipedia excerpts, identifying supporting facts

� Challenges: multi-hop reasoning, comparative questions
� Dataset size: 113K
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HotPotQA: status(Yang et al., 2018a)

Human performance EM/F1: Answer (83.6/91.4), Supporting facts (61.5/90.04), Joint (52.3/82.55)
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Task: QA on structured knowledge

� FreebaseQA (Jiang et al., 2019)
� Event-QA (Costa et al., 2020)
� WikiTableQuestions (Pasupat and

Liang, 2015)
� WikiOps (Cho et al., 2018)
� WikiReading (Hewlett et al., 2016)
� SimpleQuestions (Bordes et al., 2015)
� WikiSQL (Zhong et al., 2017)
� Russian RuBQ (Korablinov and

Braslavski, 2020), Chinese TableQA
(Sun et al., 2020), Korean TableQA
(Park et al.)

� ...

Open-domain QA: sources of information

Collections
of documents

Single document Structured knowledge

Not provided

Reading comprehension
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SimpleQuestions: example

� Collection methodology: crowdworkers asked to write questions involving the
subject and the relationship of a KB fact, with object as the correct answer

� Challenges: large-scale data
� Dataset size: 100K

(Bordes et al., 2015)
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FreebaseQA: example

� Collection methodology: questions and answers collected from trivia websites
are auto-matched with freebase subject-predicate-object triples, and matches
are verified by crowdworkers

� Challenges: trivia questions more diverse and complex than existing data for
querying KBs

� Dataset size: 28,348 unique questions

(Pasupat and Liang, 2015)
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FreebaseQA: status

Human performance: ?

(Han et al., 2020), see the paper for task status discussion
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Task: QA without provided evidence

� retrieving evidence
candidates with IR at
inference time

� integrating KBs, e.g. with
memory networks (Bordes
et al., 2015)

� directly querying text data,
e.g. latent retrieval (Lee
et al., 2019)

� pre-trained model weights
(Brown et al., 2020)

Open-domain QA: sources of information

Collections
of documents

Single document Structured knowledge

Not provided

Reading comprehension
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Collections

of documents
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The formats of QA format

The formats of QA format

Extractive

Cloze Multi-choice

Boolean

Abstractive
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Extractive QA

� SQuAD (Rajpurkar et al., 2016, 2018)
� Natural Questions (Kwiatkowski

et al., 2019)
� HotpotQA (Yang et al., 2018a)
� NewsQA (Trischler et al., 2016)
� French FQuAD (d’Hoffschmidt et al.,

2020), Chinese DRCD (Shao et al.,
2019), Russian SberQuAD (Efimov
et al., 2020), multilingual xQuAD
(Artetxe et al., 2019), TYDI QA (Clark
et al.), MLQA (Lewis et al., 2020) etc.

� ...

The formats of QA format

Extractive

Cloze Multi-choice

Boolean

Abstractive
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Extractive QA: SQuAD (Rajpurkar et al., 2016)
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SQuAD data(Rajpurkar et al., 2016)

� Collection methodology: crowdsourced questions +
answer spans, the writers see the full text (wikipedia
excerpt)

� Challenges: unanswerable questions
� Dataset size: 100K answerable + 50K unanswerable
questions
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SQuAD status (Rajpurkar et al., 2016)
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Cloze-style QA

� CBT (Hill et al., 2015a)
� CNN/Daily Mail (Hermann
et al., 2015)

� WikiLinks Rare Entity (Long
et al., 2017)

� BookTest (Bajgar et al.,
2017)

� Who Did What (Onishi
et al., 2016)

� CLOTH (Xie et al., 2018)
� ...

The formats of QA format

Extractive

Cloze Multi-choice

Abstractive

COLING 2020, Tutorial 6: Anna Rogers 42



CNN/DailyMail: example (Hermann et al., 2015)
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CNN/DailyMail: data (Hermann et al., 2015)

� Collection methodology: news articles were collected
from news sites together with professional summaries,
and sentences from summaries were converted to cloze
questions

� Challenges: complex questions not biased by writers
seeing the target text, not relying on world knowledge

� Dataset size: over 1M query-document-answer triplets
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CNN/DailyMail: status (Hermann et al., 2015)

Human performance: n/a
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Boolean QA

� BoolQ (Clark et al., 2019)
� ReCo (Chinese), Wang et al.
(2020)

� partly: Natural Questions
(Kwiatkowski et al., 2019),
CoQA (Reddy et al., 2019),
QuAC (Choi et al., 2018),
HotPotQA (Yang et al.,
2018a) and others

The formats of QA format

Extractive

Cloze Multi-choice

Boolean

Abstractive
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BoolQ: example (Clark et al., 2019)
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BoolQ: data (Clark et al., 2019)

� Collection methodology: Google queries that are boolean
questions are filtered, matched with wikipedia text and
answered by crowdworkers

� Challenges: natural questions not biased by writers seeing
the target text

� Dataset size: 16K
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BoolQ: status (Clark et al., 2019)
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Multi-choice QA

� RACE (Lai et al., 2017)
� ARC (Clark et al., 2018a)
� MCTest (Richardson et al., 2013)
� CLEF QA (Pe

textasciitilde nas et al., 2014)
� QuAIL (Rogers et al., 2020)
� MultiRC (Khashabi et al., 2018)
� IJCNLP-2017 Task 5 (Chinese) Guo

et al. (2017)
� ...

The formats of QA format

Extractive

Cloze Multi-choice

Abstractive
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RACE: example (Lai et al., 2017)
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RACE: data (Lai et al., 2017)

� Collection methodology: Expert-written questions from
English exams for middle/high school Chinese students

� Challenges: designed to test human comprehension
� Dataset size: 100K questions, 28K passages
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RACE: status (Lai et al., 2017)
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Abstractive QA

� MS MARCO (Bajaj et al.,
2016)

� CoQA (Reddy et al., 2018)
� MOCHA (Chen et al., 2020a)
� extractive and
multi-choice datasets
easily converted to
freeform

The formats of QA format

Extractive

Cloze Multi-choice

Abstractive
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MS MARCO: example (Bajaj et al., 2016)

Q: what is a corporation?

A: ”A corporation is a company or group of people authorized to act as a single entity and recognized as such
in law.”

Context 1: ”A company is incorporated in a specific nation, often within the bounds of a smaller subset of
that nation, such as a state or province. The corporation is then governed by the laws of incorporation in that
state. A corporation may issue stock, either private or public, or may be classified as a non-stock corporation.
If stock is issued, the corporation will usually be governed by its shareholders, either directly or indirectly.”

...
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MS MARCO: data (Bajaj et al., 2016)

� Collection methodology: crowd workers wrote answers to
real BING queries based on provided evidence (snippets)

� Challenges: real queries, noisy queries and text, answers
not necessarily explicit in the evidence

� Dataset size: 100K (1M version released)
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MC MARCO: status (Bajaj et al., 2016)

Human performance: ?
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Still not done with types of QA data!
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QA: types of text

� Encyclopedia: (Rajpurkar et al., 2016; Yang et al., 2018b)

� Dialogue: (Reddy et al., 2019; Choi et al., 2018)
� Academic: (Clark et al., 2018b; Mihaylov et al., 2018)
� News: (Trischler et al., 2016; Hermann et al., 2015)
� Biomedical: (Jin et al., 2019; Tsatsaronis et al., 2015)
� Health: (Vilares and Gómez-Rodríguez, 2019; Suster and
Daelemans, 2018)

� Fiction: (Kocisky et al., 2018a; Hill et al., 2015b)
� Multi-domain: QuAIL (Rogers et al., 2020), MRQA (Fisch
et al., 2019), ORB (Dua et al., 2019a)
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Types of reasoning

Unspecified
(most datasets)

Specialized

� Coreference: Quoref
(Dasigi et al., 2019)

� Temporal: (Ning et al.,
2020; Jia et al., 2018b,a)

� Numerical reasoning: (Dua
et al., 2019b; Upadhyay and
Chang, 2017; Miao et al.,
2020)

� Causality: (Lin et al., 2019)
� Properties: (Tafjord et al.,
2019)
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Types of reasoning

Is this still text-based

QA?

� Coreference

� Temporal

� Numerical reasoning

� Causality

� Properties
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What counts as �commonsense reasoning"?
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Working de�nition

Commonsense information: information that is com-
monly known and is thus not expected to be explicitly
stated in the text
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Fuzzy border between commonsense reasoning and RC

� cannot be defined in terms of types of information,
because none are consistently stated or not

� e.g. temporal or causal information may or may not be
stated

Context 1: John watched news.
Context 2: John watched news for half an hour.
Q: For how long did John watch the news?
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Sources of information in QA: also apply to commonsense reasoning

Commonsense reasoning

Collections
of documents

Single document Structured knowledge

Not provided
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Commonsense knowledge sources

� ConceptNet (Speer et al., 2017)
� BabelNet (Navigli and Ponzetto, 2010)
� FrameNet (Baker et al., 1998)
� DeScript (?)
� ... pre-trained language models? (Cui et al., 2020)

COLING 2020, Tutorial 6: Anna Rogers 63



Format 1: cloze (ReCoRD)

(Zhang et al., 2018)
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ReCoRD: data

� Collection methodology: auto-generated from CNN/Daily
mail dataset with manual filtering

� Challenges: completing cloze task only partially supported
by the text

� Dataset size: 120K
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ReCoRD: status

Human performance: 79.7% on the Wikipedia domain, and
75.4% on the web domain
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Format 2: long context + question (MCScript)

(Ostermann et al., 2018)
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MCScript: data

� Collection methodology: (a) crowdsourced narrative, (b)
separately collected questions about certain scripts, (c)
writing correct and distractor answers

� Challenges: reasoning about everyday activities with script
knowledge

� Dataset size: 14K questions
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MCScript: status

Human performance: 98.%
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Format 2: story completion (RocStories)

(Mostafazadeh et al., 2017; Sharma et al., 2018)
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RocStories: data

� Collection methodology: (a) crowdsourced narratives, (b)
asked crowdworkers to write a non-sensible ending with
about the same number of words

� Challenges: reasoning about possible story endings
� Dataset size: 3K (release v.1.5)

COLING 2020, Tutorial 6: Anna Rogers 71



RocStories: status

Human performance: 100%
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Format 3: short context + ending, story completion-style (SWAG,

Zellers et al. (2018)

(Zellers et al., 2018)
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SWAG: data (Zellers et al., 2018)

� Collection methodology: sequential video captions are
used as ground truth, subject of the second sentence is
used to generate false endings with a language model,
which are human-filtered

� Challenges: adversarially filtered distractor endings
� Dataset size: 113K
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SWAG: status (Zellers et al., 2018)
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HellaSWAG: status (Zellers et al., 2019)

HellaSWAG is an update on SWAG with a more advanced
adversarial filtering
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Format 3: short context + question: twin sentences (?)
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WinoGRANDE: data (Sakaguchi et al., 2019)
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WinoGRANDE: data

� Collection methodology: crowdsourcing + adversarial
filtering based on embedding associations

� Challenges: systematic bias reduction with AFLite
� Dataset size: 44K
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WinoGRANDE: status
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Further confusion with "inference"

� ”grounded commonsense inference” of SWAG (Zellers
et al., 2018)

On stage, a woman takes a seat at the piano. She
a) sits on a bench as her sister plays with the doll.
b) smiles with someone as the music plays.
c) is in the crowd, watching the dancers.
d) nervously sets her fingers on the keys.

� commonsense reasoning datasets recast as NLI, e.g. WNLI
(??)

Premise: I couldn’t put the pot on the shelf because it was too tall.
Hypothesis: The pot was too tall.
Label: entailed
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CHALLENGE: bridging RC and commonsense

(Rogers et al., 2020)
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QuAIL: data (Rogers et al., 2020)
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QuAIL: data (Rogers et al., 2020)

� Collection methodology: crowdsourcing specific reasoning
types with keyword-based checks

� Challenges: balanced across 9 reasoning types and 4
domains, full range of uncertainty

� Dataset size: 14K
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QuAIL: status (Rogers et al., 2020)
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Full range of uncertainty: trouble with human evaluation

(Rogers et al., 2020)
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Natural Language Inference

(Anna Rumshisky)
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Outline

High-level reasoning tasks in NLP system evaluation

The Dataset Explosion

Question answering

Commonsense reasoning

Natural Language Inference
(Anna Rumshisky)

Reality check

(Some) solutions

Open problems
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CoQA: new datasets get �solved" immediately!
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SuperGLUE: new datasets get �solved" immediately!

(Wang et al., 2019)
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However...
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Are our models that good, or our data that bad?

(Heinzerling, 2019)
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Performance issues
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EVIDENCE: lack of basic linguistic capabilities

Rychalska et al. (2018) swapped verbs in SQuAD questions with
their antonyms:

In 90.5% cases DrQA model prediction didn’t change!

Spoiler alert:
BERT doesn’t “understand” negation either (Ettinger, 2020).
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EVIDENCE: easily distracted

Jia and Liang (2017) added adversarial distractor sentences to
SQuAD texts

The accuracy of 16 published models drops from an avg of 75% F1 to 36% (down to 7%

with ungrammatical adversarial sentences).
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EVIDENCE: position bias in extractive QA

BERT trained on a biased training set (every answer in the first sentence) achieves

37.48% F1 on dev, and the same amount of randomly sampled examples achieves

85.06% F1 (Ko et al., 2020).
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EVIDENCE: insensitivity to corrupted inputs

10 tested datasets can be ”solved” with jumbled texts, and
without numbers, pronouns, logical and causal terms

(Sugawara et al., 2020).
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EVIDENCE: model-independent attacks Wallace et al. (2019)

72% of “why” questions in SQuAD: the prediction changes to “to kill american people”!
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EVIDENCE: don't really need NLU!

Simple context/type matching heuristic: F1 of 78.1 on SQuAD!

(Weissenborn et al., 2017)
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EVIDENCE: don't really need NLU!

Much of NLI data can be solved without

even looking at premises! (Poliak et al.,

2018)

SHOULD REALLY

TEST ALL QA DATA

IGNORING QUESTIONS

OR THE TEXTS...

see Sugawara et al. (2020)
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EVIDENCE: multi-hop questions not multi-hop Min et al. (2019)

HotpotQA: a single-hop BERT-based RC model achieves F1 of 67 , comparable to SOTA

multi-hop models!
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What's wrong with our data?
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The models, unable to discern

the intentions of the data sets designers,

happily recapitulate any statistical patterns

they �nd in the training data.

(Linzen, 2020)
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Annotation artifacts

(Gururangan et al., 2018)
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Syntactic homogeneity

4 neural systems including BERT drop to under 15% accuracy
(McCoy et al., 2019b)
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Testing IR or reasoning?

(Wallace and Boyd-Graber, 2018)
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Testing IR or reasoning?

(Wallace and Boyd-Graber, 2018)
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Annotator biases

BERT does not generalize to examples generated by unseen
annotators! 23 point drop on multi-annotator vs random split
on OpenBookQA, 10 on CommonsenseQA, 5 on MNLI (Geva
et al., 2019)
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Social biases

� like other NLP data, QA/NLI data may contain statistical
patterns with undesirable social implications

� the source data is already biased: e.g. most factoid
datasets are based on Wikipedia, which contains fewer
and shorter pages about women1

� research on bias reduction is budding (Sun et al., 2019),
but current techniques are limited

1https://en.wikipedia.org/wiki/Wikipedia:
WikiProject_Women_in_Red
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Long tail phenomena

It takes RoBERTa a lot longer to learn some linguistic
phenomena (Zhang et al., 2020b)
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Solution 1: Quality over quantity!
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Discriminative questions

question difficulty

Too easy:
What is the capital
of Poland?

Discriminative:
Who lives in 221B
and uses Vicodin?

Too difficult:
What was the
cause of the US
civil war?

The discriminative questions should be as error-free as
possible! (Boyd-Graber, 2019)
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Do we need datasets to be bigger or better?

SNLI dataset, based on RoBERTa-large classifier (Swayamdipta
et al., 2020)

Confidence: confidence in the true class
Variability: changes in confidence during training
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How big should the test datasets be?

Test data size depends on (a) the difference in accuracy between the systems, (b) their
avg accuracy (closer to 50% is harder), and (c) the amount of discriminative questions.
If 100% questions are disciminative, 2.5K is enough even at 1% ∆ with 50% average
accuracy. If only 25% is discriminative, we need 15K. (Boyd-Graber, 2019)
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Solution 2: Diversifying the data
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Paraphrasing

� question-first question collection (Kwiatkowski et al., 2019)

� writing questions without seeing the target text
text (Kocisky et al., 2018b)

� paraphrasing existing questions (Rogers et al., 2020)
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Adversarial question authoring: requiring questions the model can't

answer

(Dua et al., 2019b)
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Adversarial question authoring: answer + explanation

(Wallace and Boyd-Graber, 2018)
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Diversity by design: synthetic (Weston et al., 2015)
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Diversity by design: crowdsourced (Rogers et al., 2020)
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Solution 3: More di�cult types of reasoning
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Combining information from several sources

(Khashabi et al., 2018)
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Queries that require logical or numerical operations

(Dua et al., 2019b)
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Unanswerable questions: know when you don't know

(Rajpurkar et al., 2018)

COLING 2020, Tutorial 6: Anna Rogers 117



Full range of uncertainty: text-based + guessable + unanswerable

(Rogers et al., 2020)
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Solution 4: di�erent levels of di�culty
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Multiple "views" of the same benchmark

We cannot control for the kinds of reasoning that the model
employs, but we can control what data it has access to.

� adding/removing metadata for coreference, semantic
parses, disambiguation et. (Boyd-Graber, 2019)

� “ablate” parts or structure of the input (Sugawara et al.,
2020)

� settings with/without adversarial distractors (Yang et al.,
2018a)
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Solution 5: Multi-step quality control
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Multi-step quality control (Quizbowl)

NLP style:
� write the questions
� check for answerability

QuizBowl style: (Boyd-Graber,
2019)

� the question is written
� subject editor: removing ambiguity,

clarifying acceptable answers,
making the question more
discriminative

� head editor: diversity of the
question set, uniform difficulty,
repeats

� post-mortem error analysis
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Solution 6: �xing the incentives
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Crowdworker incentives

� optimizing for reward is known to be detrimental to
performance and creativity (Englmaier et al., 2018)

� gamifying the crowdsourcing, making the tasks enjoyable
(Boyd-Graber et al., 2012)

� leveraging communities of enthusiasts (Boyd-Graber, 2019)
� some evidence of Hawthorn effect (Rogers et al., 2020)
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Dataset author incentives

(Wagstaff, 2012)

COLING 2020, Tutorial 6: Anna Rogers 122



Reviewer 2 and resource papers

...

THE PAPER IS MOSTLY

A DESCRIPTION OF THE CORPUS

AND ITS COLLECTION

AND CONTAINS LITTLE

SCIENTIFIC CONTRIBUTION

(Bawden, 2019; Rogers, 2020)
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Reviewer 2 and resource papers

...

THE NEW DATASET

IS NOT LARGER

THAN OTHERS

(Bawden, 2019; Rogers, 2020)
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Emerging trend: data analysis!

� Zhang et al. (2020a): “WinoWhy: A Deep Diagnosis of
Essential Commonsense Knowledge for Answering
Winograd Schema Challenge”

� Boratko et al. (2018): “A Systematic Classification of
Knowledge, Reasoning, and Context within the ARC
Dataset”

� Yatskar (2019): “A Qualitative Comparison of CoQA, SQuAD
2.0 and QuAC”

� Yue et al. (2020): “Clinical Reading Comprehension: A
Thorough Analysis of the emrQA Dataset”

� Chen et al. (2016): “A Thorough Examination of the
CNN/Daily Mail Reading Comprehension Task”

� ...
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Reviewer 2 and resource papers

LET'S PUSH FOR

RESOURCE AND DATA

ANALYSIS TRACKS

consistent at *ACL
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Solution 7: diagnostic data
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Type 1: challenge datasets for diagnosing heuristics

� adversarial SQuAD (Jia and Liang, 2017)
� HANS (McCoy et al., 2019b)
� ...

Problem: there may be other heuristics that can go unnoticed
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Type 2: testing speci�c linguistic capabilities

� adversarial SNLI with lexical knowledge (Glockner et al.,
2018)

� RC requiring coreference (Dasigi et al., 2019)
� ...

Problem: other linguistic capabilities may be missing
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Type 3: batteries of tests

� multi-task (?Wang et al., 2019)
� multi-domain (Rogers et al., 2020; Dua et al., 2019a)
� multiple types of reasoning (Rogers et al., 2020; Dua et al.,
2019a)

� multiple linguistic capabilities (Ribeiro et al., 2020)
� ...

Problem: when do we have enough?
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When is the benchmark enough?

Dunietz et al. (2020):
“templates of understanding”
based on : the machine needs
to understand spatial,
temporal, causal and
motivational aspects of stories
(Schank and Abelson, 1977;
Zwaan et al., 1995).

COLING 2020, Tutorial 6: Anna Rogers 130



When is the benchmark enough?

Dunietz et al. (2020):
“templates of understanding”
based on : the machine needs
to understand spatial,
temporal, causal and
motivational aspects of stories
(Schank and Abelson, 1977;
Zwaan et al., 1995).

COLING 2020, Tutorial 6: Anna Rogers 130



Data for reasoning type diagnostics is scarce

most datasets only provide manual

analysis of a small sample in the paper,

e.g. (Yang et al., 2018a)

alternatives:

� synthetic data (Weston et al.,
2015; Labutov et al., 2018)

� pseudo-labeling, e.g. MS MARCO
(Nguyen et al.)

� new balanced datasets (Rogers
et al., 2020)

� recasting data from other tasks,
e.g. semantic resources for
inference (White et al., 2017)

� collections of datasets, e.g. ORB
(Dua et al., 2019a)

� re-annotating existing datasets,
e.g. ARC (Boratko et al., 2018)
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Checklisting SQuAD-tuned BERT (Ribeiro et al., 2020)
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Type 4: reasoning support

� crowdworkers identify
sentences with supporting
facts (Yang et al., 2018a)

� annotation of relevant
evidence spans (Dua et al.,
2020)

(Dua et al., 2020)
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The Dataset Explosion

Question answering

Commonsense reasoning

Natural Language Inference
(Anna Rumshisky)

Reality check

(Some) solutions

Open problems
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Methodology issues
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The SOTA chase - statistical testing = trouble

(Crane, 2018)
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Much of reported improvements are

unreproducible and within variability due to

unrelated factors
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Much of reported improvements are unreproducible and within vari-

ability due to unrelated factors (Crane, 2018)

� versions of the model, underlying framework and
low-level libraries;

� threading
� GPU computation
� random seed (see also (Dodge et al., 2020))
� interaction between the above
� reporting roundin
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Some random seeds are MUCH better! (McCoy et al., 2019a)
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Data order matters just as much!

(Rogers et al., 2020)
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Data order matters just as much!

� SOTA on the ”standard split” may not reproduce on a
random split (Gorman and Bedrick, 2019)

� both random and standard splits overestimate
performance on new samples (Søgaard et al., 2020)
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Interaction between data order and model inits

(Dodge et al., 2020)
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Data collection ethics
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NAACL 2021: https://2021.naacl.org/ethics/faq/

“Detail the dataset collection process and conditions. If
manual work was involved, describe measures taken to en-
sure that crowdworkers or other annotators were fairly com-
pensated and how fair compensation was determined.”
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NAACL 2021: https://2021.naacl.org/ethics/faq/

� Describe the characteristics of the dataset in enough
detail for a reader to understand which speaker
populations the technology could be expected to
work for. (For suggestions of what kind of information
to include, see (Bender and Friedman, 2018; Mitchell
et al., 2019; Gebru et al., 2020).

� Finally, describe the steps taken to ensure that
potential problems with the quality of the dataset do
not create additional risks.
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Data documentation is important not only from

bias & fairness standpoint!
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Data leaks vs fair evaluation on new data

GPT3-3 (Brown et al., 2020): filtering pre-training data to avoid
direct overlaps with specific benchmark datasets (based on
13-gram overlap criterion)
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Data leaks vs fair evaluation on new data

GPT3-3 (Brown et al., 2020):
The information required to answer the

question is in a passage provided to the

model, so having seen the passage during

training but not the questions and answers

does not meaningfully constitute cheating.

Where is the answer

coming from, though?
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The �Natural questions" dilemma
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The "Natural questions" dilemma

WE WANT TO SOLVE REAL

PROBLEMS!

WHO CARES ABOUT THE

QUESTIONS THAT PEOPLE

DON'T REALLY ASK?

WELL, ABOUT THAT...
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The "Natural questions" dilemma

� the users are already used to the limitations of search
engines and voice assistants, and formulate the questions
that they think more likely to get answered;

� it’s often queries rather than questions;
� the distribution of questions we can obtain from real
queries is limited;

� the questions may be ambiguous and/or having implicit
assumptions (Boyd-Graber, 2019);
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The "Natural questions" dilemma

The questions “can i buy wine in kentucky on sun-
day”, “where am i on the steelers waiting list”, “when
is the real housewives on”, and “who has majority in
the house and senate” are all answerable, but depend
on which county of Kentucky you’re in, when you paid
for your season pass, and the local network syndicat-
ing Real Housewives. However, Natural Questions calls
these unanswerable, while the previous questions are
answerable with implicit assumptions.

(Boyd-Graber, 2019)

COLING 2020, Tutorial 6: Anna Rogers 147



The "Natural questions" dilemma

WE WANT TO SOLVE REAL

PROBLEMS!

REAL DATA IS MESSY. THEN LET'S SCORE THE

ANSWERS BETTER AND/OR

ASK FOR CLARIFICATIONS.

See (Boyd-Graber, 2019; Elgohary et al., 2019)
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Seriously, what format should it be?
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The war of formats

The formats of QA format

Extractive

Cloze Multi-choice

Abstractive
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Extractive or multi-choice?

Extractive:
� easier to create
� limited to information that
is explicitly stated

� IR-leaning

Multi-choice:
� harder to create (Berzak
et al., 2020)

� any information could be
queried

� more like reasoning
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CBT: the thin border between extractive and multi-choice QA

(Hill et al., 2015a)
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Ideally - abstractive QA, but...

Have to solve evaluation for
text generation first!
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Current automated metrics are not great

existing metrics don’t use the context, and fail to capture
coreferences (Chen et al., 2019)
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Current automated metrics are not great

changing a single token can make a prediction incorrect, but F1
will be non-zero (Chen et al., 2019)
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What should the data do?
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Option 1: data for training + testing

Have to give the model a fair
chance to learn! (Geiger et al.,
2019)
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Not learning the deeper patterns!

Adversarial entailment: replacing a word
in SNLI premises with its synonyms or
hypernyms
Contradiction: replacing words with
mutually exclusive co-hyponyms and
antonyms

Result: 10-30% performance drop for 3

neural NLI systems

“What mostly affects the sys-
tems’ ability to correctly predict
a test example is the amount of
similar examples found in the
training set. Given that training
data will always be limited, this
is a rather inefficient way to
learn lexical inference.” (Glock-
ner et al., 2018)
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Despite our best efforts, we
may never be able to create a
benchmark that does not have
unintended statistical
regularities. (Linzen, 2020)
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Option 1: data for training + testing

Classic baselines don’t learn even when they have a chance to! (Geiger et al., 2019)
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Option 2: test-only benchmarks

� ”Generalization leaderboard”: train
on separate data (Linzen, 2020);

� rigorously test various capabilities
(Ribeiro et al., 2020)

� consider not only accuracy, but also
compute and data efficiency etc.
(Rogers, 2019; Ethayarajh and
Jurafsky, 2020; Boyd-Graber, 2019)
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How big should the test datasets be?

Test data size depends on (a) the difference in accuracy between the systems, (b) their
avg accuracy (closer to 50% is harder), and (c) the amount of discriminative questions.
If 100% questions are disciminative, 2.5K is enough even at 1% ∆ with 50% average
accuracy. If only 25% is discriminative, we need 15K. (Boyd-Graber, 2019)
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Thank You!

Tutorial page:
https://annargrs.github.io/dataset-explosion

Anna Rogers
University of Copenhagen
 arogers@sodas.ku.dk

@annargrs

Anna Rumshisky
University of Massachusetts

Lowell
 arum@cs.uml.edu
@arumshisky
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